Das Rätsel um Chinas ältestes Observatorium
Auf den Koordinaten 34.402406°N mit 113.140711°E befindet sich das älteste bekannte historische Sonnen- und Observatorium Chinas.
(Es ähnelt im Aussehen den Maya-Tempeln).
 
Vor mehr als 3100 Jahren wurde hier in Dengfeng (Gaocheng) der Standort des Observatoriums mit der Aufstellung eines großen Schattenzeigers (Gnomon) sozusagen in Betrieb genommen. Im Jahre 1276 wurde hier das erste große Observatorium errichtet.
 
Bild 1: Das Gaocheng-Observatorium, erbaut 1276, (Quelle: Wikipedia, Bild von 2010)
 
Das Observatorium besteht aus einer Turmplattform mit 2 darüber liegenden Kabinen.
 
Die Höhe der Turmplattform wird mit 9,46 m angegeben. Die Gesamthöhe (mit Kabinen/Messhütten) der Anlage wird mit 12,62 m angegeben.
Vor dem Observatorium befindet sich eine Wasserrinne mit einer Länge von 31,19 m und einer Breite von 0,53 m. Parallel zur Rinne sind 36 Steinplatten verlegt.
Die Beschattungsstange (Gnomon) besteht aus einer Querstange und ist in einer Höhe von ca. 10 m angebracht.
Die Schattenlänge zur Wintersonnenwende beträgt ca. 31 m. Die Messunsicherheit beträgt 2 mm.
Um das Jahr 700 wurden 20 Sonnenobservatorien gebaut, um den Meridiangrad zu bestimmen. Das Ergebnis war ein Wert von 131,29 km anstelle des modernen Wertes von 111,12 km. Diese große Differenz wurde auf einen Messfehler zurückgeführt.
 
Soweit die offiziellen Messungen.
 
Schauen wir nun genauer hin und analysieren diese Werte. Mal sehen, was unsere Vorfahren wussten...
 
 
1) Die Wahl des Standortes:
 
Mit der Wahl dieses Ortes vor mehr als 3100 Jahren wurde für die nachfolgenden Generationen der Grundstein für die Messung der Sonnenpositionen (Schattenlängen) und die genaue Beobachtung des Sternenhimmels gelegt. Dies war eine große Verantwortung. Deshalb muss dieser Ort nach besonderen Gesichtspunkten geplant worden sein. Eines der größten Rätsel in der Archäologie ist die Standortwahl prähistorischer Steinsetzungen (z.B. Stonehenge, Göbekli Tepe, ägyptische Pyramiden). Für die Ableitung der Standortwahl des Gaocheng Observatoriums gibt es keine offizielle Lehrmeinung.
 
Von großem Interesse ist der Erdumfang am Ort der heutigen geographischen Breite. Es ist bekannt, dass der Erdumfang am Äquator 40.000 km beträgt. Wir rechnen 40.000 km x cos(34.402406) und erhalten einen entsprechenden Erdumfang von 33003 km. Die Abweichung zu heutigen Messmethoden beträgt nur 3 km. Das ist sensationell, besonders wenn man bedenkt, dass das Observatorium auf einer Höhe von 266 m über dem Meeresspiegel errichtet wurde. Hier scheint ein Zahlenwert von 33 als Grundlage für astronomische Berechnungen gedient zu haben. Das wichtigste traditionelle Längenmaß in China ist das Chi (1 Chi = 1/3 m). Alle anderen Längenmaße sind Teiler oder Vielfache (z.B. 1 Zhang = 10/3 m = 3,33 m) von Chi.
 
Welche Position am Boden wäre richtig gewesen, wenn der Erdumfang glatte 33000 km betragen hätte? Wir berechnen 40000 km geteilt durch 33000 km und erhalten einen Wert von 0,825. Der korrekte Breitengrad dafür wäre 34,41151 Grad (inv cos(0,825)). Die Abweichung dieser theoretischen Bodenposition von der tatsächlichen Bodenposition des Observatoriums beträgt nur etwa 850 m in nördlicher Richtung.
Man kann sagen, dass die tatsächliche Position mit einer unglaublichen Genauigkeit gemessen wurde!
 
Dies wäre der älteste kulturelle Beweis dafür, dass die Erde keine Scheibe ist.
 
Hatten die alten Chinesen dieses Wissen? Es sieht so aus.
 
 
2) Die Beobachtungsstation:
 
Das Observatorium besteht aus einer Plattform mit zusätzlichen Messkabinen für astronomische Beobachtungen. Ein Querbalken im oberen Bereich diente zur Messung der Schattenlängen um die Mittagszeit (Ausrichtung nach Süden).
 
Zunächst zu den astronomischen Berechnungen:
 
Für astronomische Berechnungen ist der Wert Pi (3,14...) von zentraler Bedeutung. Viele astronomische Formeln enthalten den Wert Pi. Pi ist eine mathematische Konstante. Es wäre eine enorme Vereinfachung, wenn man den Wert Pi weglassen oder in der Berechnung einfach abkürzen könnte.
 
Aber wie sollte das gehen?
Genial einfach: Die Konstante Pi ist bereits in der Konstruktion enthalten. Alle gemessenen Werte enthalten automatisch den Wert Pi. So werden astronomische Berechnungen ohne extra aufgeführtes Pi durchgeführt. Einfach genial ...
 
Die Höhe der Plattform ist mit 9,46 m angegeben. Nun, wenn wir 9,46 m durch Pi teilen, stellen wir fest, dass Pi ziemlich genau 3 mal hineinpasst. Dasselbe gilt für die Messkabinen. Wenn wir von der Gesamthöhe von 12,62 m die Höhe der Plattform von 9,46 m abziehen, erhalten wir ziemlich genau den Wert von einem Pi in Metern. Das Observatorium hat also eine Gesamthöhe von 4 * Pi in Metern.
 
Wenden wir uns nun der Wasserrinne mit einer Länge von 31,19 m und einer Breite von 0,53 m zu. Die Länge der Wasserrinne ist, wie man jetzt selbst sieht, ziemlich genau 10 x Pi.
 
Die Breite von 0,53 m ist ein ganz besonderes Maß. Es ist das Maß der Königselle, auch Royal Cubit genannt. Es errechnet sich aus Pi geteilt durch 6 und ist die kleinste Längeneinheit, nach der die chinesischen und ägyptischen Pyramiden geplant und gebaut wurden.
 
Betrachten wir nun die Wasserrinne aus technischer Sicht:
 
1) Wozu braucht man bei einer Mauer ständig den Beweis der korrekten Ausrichtung? Wenn z.B. ein Bild exakt aufgehängt werden soll, wird nur einmal die Korrektheit mit einer Wasserwaage markiert. Danach wird die Wasserwaage nicht mehr gebraucht.
 
2) Die Wasserrinne besteht aus 2 parallel verlaufenden Vertiefungen. In heutiger Zeit werden solche Konstruktionen üblicherweise als Schlittenbahn bezeichnet. Es handelt sich um Führungen für Kufen, damit die Gerätschaften auf der Schlittenbahn exakt positioniert werden können. Gleichzeitig kann zum Boden hin eine Markierung in Grad übernommen werden. Denken Sie an die 36 Bodenplatten (entspricht 360 Grad in 10er Schritten) entlang der Schlittenbahn von 10 x Pi in Meter.
 
Halten wir noch zusätzlich fest: Alle Angaben des Gebäudes aus dem Jahr 1276 beziehen sich auf das Meter. Unser gemeinsames Urmeter wurde erst 1795 eingeführt. Das weltweit gültige metrische System wurde erst 1875 (Internationale Meterkonvention) unterzeichnet.
 
Die Berechnung der Schattenlängen:
 
Der Schattenstab besteht aus einer Stange. Wie ist es möglich, dass nach ca. 750 Jahren kein Rostansatz erkennbar ist?  Das gefundene Bildmaterial von Suchmaschinen zeigt, dass es sich eher um ein Rohr (ca. 20 cm Durchmesser, Länge ca. 1,50 m bis 1,80 m) und nicht um eine Stange handelt. Die Ausführung als Vollmaterial (Eisen) hätte ein Gewicht von mehr als einer halben Tonne (500 Kg) ergeben. Dieses schwere Gewicht hätte aus statischen Gründen nicht befestigt werden können. Eine weitere Tatsache ist, das Metallrohre erst vor einigen Jahrzehnten hergestellt und vertrieben wurden. Das folgende Bild aus dem Internet zeigt das Observatorium ohne Schattenstab. Es ist eine ältere Aufnahme, zu erkennen am niedrigeren Baumbewuchs.
 
 
Bild 2: Gaocheng-Observatorium ohne Schattenstab (ältere Aufnahme), Quelle: Internet
 
Kommen wir nun zur Aussage, das der Schattenwurf zur Zeit der Wintersonnenwende (Mittagszeit) etwa 31 Meter betragen hat.
 
Um hier brauchbare Ergebnisse zu erzielen, habe ich eine Tabelle über verschiedene Schattenlängen zu verschieden Schlüsseltagen im Jahr, nur für diesen Standort,  zusammengestellt.
 
Als Schlüsseltage dienen die Anfänge unserer 4 Jahreszeiten, sowie die dazwischen liegenden keltischen Schlüsseltage.
 
Beispiel:
 
Unsere 4 Jahreszeiten sind immer Anfänge einer Periode. Keltische Schlüsseltage liegen exakt in der Mitte. Zwischen Sommer- und Herbstanfang liegt bekanntlich der Hochsommer. Für das Datum des Hochsommers nehmen Sie bitte den entsprechenden keltischen Schlüsseltag (Lughnasadh).
 
Observatorium     Datum   Schattenlänge   Höhe    Aufgang  Untergang
   (Dengfeng)             (Gnomon=10m)    [Grad]  [Grad]   [Grad]
 
Frühlingsanfang   20.03.     6,870 m       55,5    89,31    270,96
      (Equinox)
Sommeranfang      21.06.     1,938 m      70,03    60,75    299,47
     (Solstice)
Herbstanfang      22.09.     6,780 m      55,86    88,96    270,68
     (Equinox)
Winteranfang      21.12.    15,886 m      32,19   118,19    241,96
     (Solstice)
Imbolc            04.02.    12,154 m      39,45   109,06    250,96
 
Beltaine          05.05.     3,269 m      71,90    69,48    290,61
 
Lughnasadh        06.08.     3,202 m      72,75    68,90    290,74
 
Samhain           05.11.    11,960 m      39,90   108,34    251,26
 
Equinox:    Primär-Äquinoktium:      20.03.2017      18:28  CST
Solstice:   Juni-Sonnenwende:        21.06.2017      12:23  CST
Equinox:    Sekundär-Äquinoktium:    23.09.2017      04:01  CST
Solstice:   Dezember-Sonnenwende:    21.12.2017      00:27  CST
 
Zeitzone (TZ)  Asia / Shanghai CST
CST = Central Standart Time = (UTC-6)
 
Wie Sie aus obiger Tabelle entnehmen können, beträgt der längste Schatten zur Zeit der Wintersonnenwende etwa 15,9 m. Damit ist die Angabe in Wikipedia, der Schatten sei 31 m lang, falsch.
 
Bei einer angenommenen Schattenlänge von 31 m und einer Sonnenhöhe von 32,19 Grad, hätte ein Schattenstab (Gnomon) eine Höhe von etwa 20 m erreichen müssen. Das Observatorium ist jedoch wesentlich kleiner.
 
 
3) Bestimmung des Meridiangrad:
 
Um das Jahr 700 herum sollte der Meridiangrad bestimmt werden. Die gemessene Abweichung war allerdings so groß, dass es sich nur um einen Messfehler der damaligen Messtechniker handeln konnte.
 
In Wikipedia gibt es derzeit keinen Hauptartikel zum Begriff Meridiangrad. Der Begriff taucht aber an unterschiedlichen Textstellen verschiedener Wikipedia-Beiträge auf.
Ich möchte Ihnen an dieser Stelle den Begriff näher erklären: Ein Vollkreis kann in 360°- Schritten unterteilt werden. Eine Schrittweite von 1 Grad kann als Meridiangrad bezeichnet werden. Die Interessante Frage lautet daher, wie lang ist die Differenz zwischen zwei Meridiangraden, bezogen auf die Position am Äquator?
 
Also rechnen wir 40000 Km geteilt durch 360 Grad = 111.111 Km. Die moderne Längenangabe von 111,12 Km bei Wikipedia ist ebenfalls nicht richtig. Der exakte Wert lautet 111,111 Km.
 
Wer ursprünglich behauptet hat, das es sich bei 131,29 Km um einen Messfehler der Techniker handeln muss, hat das Thema nicht verstanden. Messtechniker machen keine Fehler. Dieser wichtige Wert wurde mit Sicherheit mehrfach überprüft.
 
(Bei Abweichungen zum wahren Wert kann es sich nur um Differenzen in den Nachkommastellen handeln!)
 
Leider existieren im Internet sehr viele Artikel zur Beschreibung des Gaocheng-Observatoriums. Alle Verantwortlichen Redakteure übernehmen ungeprüft die gleichen Inhalte.
 
Doch wie lassen sich nun die ca. 20 Km Differenz erklären? Wir gehen erst einmal davon aus, dass die Messtechniker einen guten Job gemacht haben und korrekte Ergebnisse lieferten.
 
Um das Jahr 700 wurden Zeitmessungen vorgenommen, bzw. es wurde versucht, kalendarische Werte zu erhalten.
 
Hier meine mögliche Lösung: Ein tropisches Jahr dauert genau 365,2424 Tage. Wir definieren 1 Jahr mit 12 Monate. Der Erdumfang beträgt 40000 Km.
Wir rechnen 40000 Km geteilt durch 365,2424 und erhalten 109,5163103 km. Diesen Wert multiplizieren wir mit 12 (Monate) und erhalten 131,41957. Die Zahlendifferenz beträgt weniger als 1/1000 zum Ursprungswert von 131,29 km.
Mir ist die historische Wahrheit leider nicht bekannt, aber dieser Zusammenhang scheint mir äußerst wahrscheinlich.
 
 
4) Die Lösung des Rätsels:
 
Die Hauptfrage dreht sich weiterhin um die ursprüngliche Standortwahl des Observatoriums. Diese habe ich Ihnen unter Punkt 1) nicht erklärt. Zur Lösung mussten Sie erst bis hierher lesen, um zu verstehen, warum mathematische Konstanten herausgerechnet werden.
 
Wie verhält es sich mit physikalischen Konstanten? Die wichtigste physikalische Konstante für astronomische Beobachtungen ist natürlich die Erdneigung von derzeit 23,43698 Grad.
 
(Durch die Gravitationseinflüsse der anderen Körper im Sonnensystem ändert sie sich Schiefe der Ekliptik langperiodisch. Sie variiert innerhalb von rund 40.000 Jahren etwa zwischen 21,9° und 24,3°, also um 2,4°).
 
Jetzt beschreibe ich Ihnen erst einmal den Zusammenhang von Stonehenge in England, bezogen auf die Standortwahl:
 
Stonehenge gilt als das älteste Observatorium der Welt. Der Breitengrad von Stonehenge lautet 51,18 Grad. Weiter oben habe ich Ihnen den mathematischen Bezug der Königselle(KE) = (Pi/6) erklärt.
 
 
1) Stonehenge:
 
Nun zur unglaublichen mathematischen Beziehung:
 
Hinweis: Tangens von 27,6365° ergibt die Königselle (KE)
 
Position von Stonehenge = Erdneigung (23,44°) + inv tan(KE)
 
Ergebnis = Position von Stonehenge = 51,08 Grad (Soll: 51,18 Grad)
 
Der Vorteil liegt klar auf der Hand:
 
 
Alle astronomischen Berechnungen wurden auf Null° (Äquator) gerechnet und waren weltweit mathematisch vergleichbar.
 
 
2) Gaocheng:
 
Welche Beziehung gilt für den Standort des Gaocheng-Observatoriums?
 
Hinweis: Tangens von 28,81° ergibt den Standort.
 
100 x KE (100 x Pi/6) = Erdneigung (23,44°) + inv tan(33/60) (28,81°)
 
Ergebnis: Wert der Königselle = 52,25 Grad (Soll: 52,36 Grad)
 
(Die Zahl 33 ist der gekürzte Erdumfang von 33000 Km. Die Zahl 60 steht für den Teiler in Minuten)
 
Alle astronomischen Berechnungen wurden auf den Wert der Königselle (Pi / 6) gerechnet und waren weltweit mathematisch vergleichbar.
 
-----
 
Sicherlich erkennen Sie hier die Ähnlichtkeit im Aussehen der Gebäude zu den Gebäuden der Maya-Kultur. Es scheint ähnliches Wissen in der Astronomie über Kontinente hinweg gegeben zu haben.
 
 
(Bitte beachten Sie das Copyright des Autors und lesen Sie auch die Hinweise zum Urheberrecht.)
 
 
© 2024
http://www.WCK.DE

WCK.DE - World Culture Knowledge


Alle Rechte vorbehalten